基于Fluent的蝶閥及執(zhí)行機構(gòu)溫度場研究

2013-10-29 吳澤豪 武漢科技大學(xué)機械自動化學(xué)院

  研究了蝶閥及執(zhí)行機構(gòu)的熱傳導(dǎo),并根據(jù)影響執(zhí)行機構(gòu)溫度的因素,提出了降低溫度的方法。利用Fluent軟件,對改造的蝶閥及執(zhí)行機構(gòu)的溫度場進行了仿真。并在現(xiàn)場試驗中驗證了該方法的可行性。通過對驗證后的蝶閥及 執(zhí)行機構(gòu)進行溫度檢測與故障率統(tǒng)計,發(fā)現(xiàn)執(zhí)行機構(gòu)的溫度和故障率降低。

  在熱軋生產(chǎn)工藝中,加熱爐地位十分重要。按軋機的軋制節(jié)奏,加熱爐將不同規(guī)格、不同鋼種、不同裝入溫度的板坯加熱到工藝要求的溫度。進入爐內(nèi)的空氣,都先經(jīng)過換熱器預(yù)熱,再由空氣管道輸送,最后在管道末端的燒嘴處與煤氣混合,進入加熱爐燃燒。爐內(nèi)溫度跟蝶閥閥芯開合度有密切關(guān)系,爐內(nèi)溫度可視為穩(wěn)定恒溫。

  蝶閥閥芯由執(zhí)行機構(gòu)控制,當執(zhí)行機構(gòu)的溫度過高,執(zhí)行機構(gòu)的氣缸變形,內(nèi)部密封環(huán)損傷,缸體拉傷、漏氣,導(dǎo)致其調(diào)節(jié)精度降低。當?shù)y閥芯開合度過大,空氣流量大,爐溫升高,造成鋼坯表面氧化鐵皮增厚,這直接降低鋼坯的成材率和鋼材的質(zhì)量;相反,蝶閥閥芯開合度過大,空氣流量小,會導(dǎo)致爐溫過低,鋼坯加熱溫度不夠,軋機無法順利進行軋制,嚴重磨損軋輥,縮短軋機的使用壽命,損毀其他的配套機電設(shè)備。

  基于此,真空技術(shù)網(wǎng)(http://bjjyhsfdc.com/)分析影響蝶閥及執(zhí)行機構(gòu)溫度的主要因素,并提出相應(yīng)的降溫方法。利用有限元分析軟件Fluent,對蝶閥及執(zhí)行機構(gòu)進行溫度仿真。

1、蝶閥及執(zhí)行機構(gòu)

  執(zhí)行機構(gòu)用來控制蝶閥閥芯的開合度,蝶閥的材料為不銹鋼,執(zhí)行機構(gòu)材料為鋁合金。其工作原理主要是:利用壓縮儀表氣體推動執(zhí)行機構(gòu)內(nèi)多組合啟動活塞運動,帶動氣動執(zhí)行機構(gòu)主軸旋轉(zhuǎn),蝶閥閥芯隨之開合。加裝支架與隔熱墊的蝶閥與執(zhí)行機構(gòu)的三維圖如圖1所示。

具有支架與隔熱墊的蝶閥及執(zhí)行機構(gòu)三維圖

圖1 具有支架與隔熱墊的蝶閥及執(zhí)行機構(gòu)三維圖

2、蝶閥及執(zhí)行機構(gòu)傳熱機理研究

  2.1、傳熱機理

  蝶閥與執(zhí)行機構(gòu)的熱傳遞方式主要有:固體材料之間的熱傳導(dǎo);環(huán)境空氣以及儀表氣體的對流;高溫管道對執(zhí)行機構(gòu)的熱輻射。三種類型的熱傳遞方程如下。熱傳導(dǎo)公式:

基于Fluent的蝶閥及執(zhí)行機構(gòu)溫度場研究(1)

  式中:Q為時間內(nèi)的傳熱量或熱流量;K為熱傳導(dǎo)率或熱傳導(dǎo)系數(shù);T為溫度;A為平面面積;d為兩平面之間的距離。對流公式:

基于Fluent的蝶閥及執(zhí)行機構(gòu)溫度場研究(2)

  式中:q″為對流單位熱流量;h為對流換熱系數(shù);TS為固體表面的溫度;TB 為周圍流體的溫度。輻射公式:

基于Fluent的蝶閥及執(zhí)行機構(gòu)溫度場研究(3)

  式中:q為熱流率;ε為實際物體的輻射率;σ為斯蒂芬-波爾茲曼常數(shù);A1為輻射面1的面積;F12為輻射面1到輻射面2的形狀系數(shù);T1為輻射面1的絕對溫度;T2為輻射面2的絕對溫度。

  爐溫一般維持在1300℃,管內(nèi)熱空氣溫度高達500℃。上述的三種熱量傳導(dǎo)方式,導(dǎo)致執(zhí)行機構(gòu)氣缸的表面溫度較高。測量得到,執(zhí)行機構(gòu)最高溫度達到156℃,出現(xiàn)在其下表面;最低溫度達到120℃,出現(xiàn)在執(zhí)行機構(gòu)的指位器上表面。由氣動執(zhí)行機構(gòu)的使用標準得知,通常空氣調(diào)節(jié)閥氣缸活塞密封圈的最高耐溫值是120℃,有效范圍是-18~80℃。因此,執(zhí)行機構(gòu)的溫度已經(jīng)遠遠高于活塞密封圈的耐溫值,由前面所述知,這對執(zhí)行機構(gòu)的正常工作造成很大的影響。

  2.2、執(zhí)行機構(gòu)的降溫方法

  由于管內(nèi)熱空氣流速較快,蝶閥閥芯與管內(nèi)熱空氣直接接觸,蝶閥閥芯表面可視為500℃。閥芯高溫通過金屬之間熱傳導(dǎo),導(dǎo)致執(zhí)行機構(gòu)溫度升高。由熱傳導(dǎo)公式(1)可知,熱量跟兩高溫面的距離以及熱傳導(dǎo)系數(shù)有關(guān)。為了降低執(zhí)行機構(gòu)與蝶閥之間的熱傳導(dǎo)效果,可以阻礙兩者間熱量的傳遞。因此,在蝶閥與執(zhí)行機構(gòu)間增添隔熱支架,將執(zhí)行機構(gòu)下表面與蝶閥的高溫面分開(蝶閥閥桿需加長)。還可以通過安裝隔熱墊,對熱傳導(dǎo)阻隔效果更好。隔熱墊材料為礦棉,該類材料比熱容大(650J/(kg·℃)),熱導(dǎo)率低(0.045 W/(m·℃))。

  由圖1可知,蝶閥及執(zhí)行機構(gòu)安裝方向是豎直向上,垂直于地面。隨著環(huán)境中空氣溫度升高,密度變小,熱空氣豎直上浮,該過程傳遞的熱量也相當大,造成執(zhí)行機構(gòu)溫度升高。因此為了避免熱空氣上浮所帶來的熱量影響, 可將蝶閥執(zhí)行機構(gòu)從豎直安裝改為橫裝,即蝶閥執(zhí)行機構(gòu)平行于地面。

  內(nèi)部儀表氣體遠離過高的熱源,其溫度與室內(nèi)溫度接近,即為60℃。這樣氣動執(zhí)行機構(gòu)的溫度,隨著儀表氣體的流動,可以起到降溫效果。因此,可以將電磁閥等空氣過濾裝置與蝶閥及執(zhí)行機構(gòu)分離,加長儀表氣的供氣管道。

3、蝶閥及執(zhí)行機構(gòu)溫度場仿真

  根據(jù)理論分析,執(zhí)行機構(gòu)降溫方法有:蝶閥與執(zhí)行機構(gòu)之間增添支架與隔熱墊(圖1);蝶閥執(zhí)行機構(gòu)安裝方向由豎裝改為橫裝;降低儀表氣體溫度。通過Fluent對蝶閥及執(zhí)行機構(gòu)的溫度仿真,來驗證降溫方法是否有效可行。

  3.1、蝶閥及執(zhí)行機構(gòu)的模型建立

  考慮空氣的影響,讓熱分析的結(jié)果更貼近蝶閥控制機構(gòu)在現(xiàn)場中的受熱情況。將添加隔熱墊與支架的蝶閥及控制機構(gòu)三維模型在Pro/E中建立,導(dǎo)入Gambit中進行前處理的操作,與空氣模型進行耦合,見圖2。網(wǎng)格大小15mm,網(wǎng)格數(shù)量555617個。

蝶閥及執(zhí)行機構(gòu)計算模型

圖2 蝶閥及執(zhí)行機構(gòu)計算模型

  3.2、Fluent后處理設(shè)置

  在Fluent中選擇材質(zhì):執(zhí)行機構(gòu)為鋁;支架與蝶閥同為不銹鋼;隔熱墊為礦棉,厚度5mm;空氣物理屬性采用Boussinesq模型。其中在邊界條件的設(shè)置中,由于蝶閥執(zhí)行機構(gòu)橫裝,將重力方向設(shè)置成x方向(豎裝時是z方向)。執(zhí)行機構(gòu)各表面導(dǎo)熱系數(shù)為853.2J/(h·mm·℃),蝶閥各表面導(dǎo)熱系數(shù)為72J/(h·mm·℃)。執(zhí)行機構(gòu)內(nèi)表面溫度設(shè)置成與儀表氣體同溫,即環(huán)境溫度60℃。開啟Fluent軟件的能量方程,開啟容差收斂方程,經(jīng)迭代12次,結(jié)果達到收斂。

  3.3、仿真結(jié)果及分析

  圖3(a)可見,由上到下,整個模型溫度出現(xiàn)不同層次的變化。 空氣與蝶閥控制結(jié)構(gòu)的整個外表面有熱交換,并向四周發(fā)散。蝶閥控制機構(gòu)中與熱空氣接觸的表面溫度最高(500℃)。空氣與執(zhí)行機構(gòu)和蝶閥的外表面耦合情況正常,溫度傳遞自然,溫度大致由熱源處向遠處呈遞減的趨勢。三種材料的熱傳遞效果不一樣,蝶閥的材質(zhì)是不銹鋼,熱傳遞效果很明顯,溫度遞減不是很大。但蝶閥控制結(jié)構(gòu)外圍的空氣熱傳遞效果就低,溫度遞減明顯。執(zhí)行機構(gòu)的鋁質(zhì)材料的熱傳遞效果,屬于二者中間。圖3(b)為蝶閥執(zhí)行機構(gòu)的溫度分布圖,執(zhí)行機構(gòu)下底面溫度最高(119℃);其指位器上表面溫度最低(97℃)。

蝶閥溫度云圖

圖3 蝶閥溫度云圖(℃)

  通過Fluent對蝶閥執(zhí)行機構(gòu)的溫度場仿真可知,改變蝶閥執(zhí)行機構(gòu)的安裝形式,安裝隔熱墊與支架,改變儀表氣體溫度,均能達到降低蝶閥執(zhí)行機構(gòu)溫度的效果。如表1所示,整改前、后,執(zhí)行機構(gòu)下表面(執(zhí)行機構(gòu)溫度最高處)溫度降幅達到36℃,指位器上表面(執(zhí)行機構(gòu)溫度最低處)溫度降幅達到23℃,綜合平均溫度下降幅度達到29℃。從結(jié)果可見,執(zhí)行機構(gòu)的溫度分布均在產(chǎn)品規(guī)定的最高耐溫值120℃之下,已能滿足實際工作的標準。

表1 蝶閥及執(zhí)行機構(gòu)溫度

蝶閥及執(zhí)行機構(gòu)溫度

4、現(xiàn)場實施

  根據(jù)Fluent的仿真結(jié)果可見,降溫方法能起到降低蝶閥執(zhí)行機構(gòu)溫度的作用。因此,在現(xiàn)場進行實施。①蝶閥及執(zhí)行機構(gòu)橫裝,即將其安裝角度旋轉(zhuǎn)90°,平行于水平面,如圖4所示。 ②蝶閥及執(zhí)行機構(gòu)之間安裝隔熱墊和支架,將蝶閥與氣缸分離,支架上下表面增添耐高溫隔熱墊,如圖5所示。③將電磁閥等空氣過濾裝置移至溫度較低處,遠離蝶閥熱空氣管道,并且加長儀表氣體的供氣管道,如圖6所示。

蝶閥執(zhí)行機構(gòu)橫裝

圖4 蝶閥執(zhí)行機構(gòu)橫裝

隔熱墊與支架的安裝

圖5 隔熱墊與支架的安裝

隔熱墊與支架的安裝

圖6 電磁閥與蝶閥執(zhí)行機構(gòu)分離

5、結(jié)論

  (1)各處空氣管道氣缸的溫度均有所下降。統(tǒng)計該空氣管道的蝶閥及執(zhí)行機構(gòu)主要部位的溫度檢測結(jié)果發(fā)現(xiàn),蝶閥及執(zhí)行機構(gòu)溫度降低23.3~28℃。蝶閥及執(zhí)行機構(gòu)的工作溫度均在120℃(最高耐溫值)之下。

  (2)各處空氣管道蝶閥執(zhí)行機構(gòu)及其配備的電磁閥故障率下降幅度明顯。其中,氣缸故障率降低98.4%,電磁閥故障率降低89.7%。